Zadanie 34 (0-4) Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe 45√3 . Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa. Źródło CKE - Arkusz egzaminacyjny 2017/2018 - Matura maj poziom podstawowy. 5 czerwca, 2018 6 sierpnia, 2019 Zadanie 11 (0-1) Funkcja liniowa f(x)=(1-m2)x+m-1 nie ma miejsc zerowych dla A. m=1 B. m=0 C. m=-1 D. m=-2 Źródło CKE - Arkusz egzaminacyjny 2017/2018 - Matura czerwiec poziom podstawowy Analiza: Odpowiedź: A. m=1 B. m=0 C. m=-1 D. m=-2 Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią

Egzamin zawodowy E.13 2018 czerwiec: styczeń 2018: Matura poziom rozszerzony: Matematyka – matura poziom rozszerzony. Język polski – matura poziom rozszerzony.

Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura Czerwiec 2018 zadanie 26 Rozwiąż nierówność 2x(1−x)+1−xRozwiąż nierówność 2x(1−x)+1−xChcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura Czerwiec 2018 zadanie 25 W pudełku znajdują się dwie kule: czarna i biała. Czterokrotnie losujemy ze zwracaniem jedną kulę z tego pudełka. Prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie trzy razy w czterech losowaniach wyciągniemy kulę koloru białego, jest równeNastępny wpis Matura Czerwiec 2018 zadanie 27 Wykresem funkcji kwadratowej f określonej wzorem f(x)=x2+bx+c jest parabola, na której leży punkt A=(0,−5). Osią symetrii tej paraboli jest prosta o równaniu x=7. Oblicz wartości współczynników b i c. Biologia - Matura Czerwiec 2018, Poziom rozszerzony (Formuła 2007) - Zadanie 1. Pobierane przez rośliny z roztworu glebowego sole mineralne są źródłem pierwiastków niezbędnych do prawidłowego przebiegu w komórkach wielu przemian biochemicznych, m.in. związanych z procesem fotosyntezy. Poniżej przedstawiono przykłady funkcji, jaką Rozwiązaniem równania (x2−2x−3)⋅(x2−9)/x−1=0 nie jest liczba:Chcę dostęp do Akademii! Liczba log327log3√27 jest równa:Chcę dostęp do Akademii! Jedną z liczb spełniających nierówność (x−6)⋅(x−2)2⋅(x+4)⋅(x+10)>0 jest:Chcę dostęp do Akademii! Liczba dodatnia a jest zapisana w postaci ułamka zwykłego. Jeżeli licznik tego ułamka zmniejszymy o 50%, a jego mianownik zwiększymy o 50%, to otrzymamy liczbę b taką, że:Chcę dostęp do Akademii! Funkcja liniowa f jest określona wzorem f(x)=(a+1)x+11, gdzie a to pewna liczba rzeczywista, ma miejsce zerowe równe x=3/4. Stąd wynika, że:Chcę dostęp do Akademii! Funkcja f jest określona dla każdej liczby rzeczywistej x wzorem f(x)=(m√5−1)x+3. Ta funkcja jest rosnąca dla każdej liczby m spełniającej warunek:Chcę dostęp do Akademii! Układ równań {x−y=2 i x+my=1 ma nieskończenie wiele rozwiązań dla:Chcę dostęp do Akademii! Rysunek przedstawia wykres funkcji f zbudowany z 6 odcinków, przy czym punkty b=(2,−1) i C=(4,−1) należą do wykresu funkcji. Równanie f(x)=−1 ma:Chcę dostęp do Akademii! Dany jest rosnący ciąg arytmetyczny (an), określony dla liczb naturalnych n≥1, o wyrazach dodatnich. Jeśli a2+a9=a4+ak, to k jest równe:Chcę dostęp do Akademii! W ciągu (an) na określonym dla każdej liczby n≥1 jest spełniony warunek an+3=−2⋅3n+1. Wtedy:Chcę dostęp do Akademii! Dla każdej liczby rzeczywistej x wyrażenie (3x−2)2−(2x−3)(2x+3) jest po uproszczeniu równe:Chcę dostęp do Akademii! Kąt α∈(0°,180°) oraz wiadomo, że sinα⋅cosα=−3/8. Wartość wyrażenia (cosα−sinα)2+2 jest równa:Chcę dostęp do Akademii! Wartość wyrażenia 2sin218°+sin272°+cos218° jest równa:Chcę dostęp do Akademii! Punkty B, C i D leżą na okręgu o środku S i promieniu r. Punkt A jest punktem wspólnym prostych BC i SD, a odcinki i są równej długości. Miara kąta BCS jest równa 34° (zobacz rysunek). Wtedy:Chcę dostęp do Akademii! Pole trójkąta ABC o wierzchołkach A=(0,0), B=(4,2), C=(2,6) jest równe:Chcę dostęp do Akademii! Na okręgu o środku w punkcie O wybrano trzy punkty A, B, C tak, że |∢AOB|=70°, |∢OAC|=25°. Cięciwa AC przecina promień OB (zobacz rysunek). Wtedy miara ∢OBC jest równa:Chcę dostęp do Akademii! W układzie współrzędnych na płaszczyźnie dany jest odcinek AB o końcach w punktach A=(7,4), B=(11,12). Punkt S leży wewnątrz odcinka AB oraz |AS|=3⋅|BS|. Wówczas:Chcę dostęp do Akademii! Suma odległości punktu A=(−4,2) od prostych o równaniach x=4 i y=−4 jest równa:Chcę dostęp do Akademii! Suma długości wszystkich krawędzi sześcianu jest równa 96cm. Pole powierzchni całkowitej tego sześcianu jest równe:Chcę dostęp do Akademii! Dany jest trójkąt równoramienny ABC, w którym |AC|=|BC|. Kąt między ramionami tego trójkąta ma miarę 44°. Dwusieczna kąta poprowadzona z wierzchołka A przecina bok BC tego trójkąta w punkcie D. Kąt ADC ma miarę:Chcę dostęp do Akademii! Liczb naturalnych dwucyfrowych podzielnych przez 6 jest:Chcę dostęp do Akademii! Podstawą ostrosłupa jest kwadrat ABCD o boku długości 4. Krawędź boczna DS jest prostopadła do podstawy i ma długość 3 (zobacz rysunek). Pole ściany BCS tego ostrosłupa jest równe:Chcę dostęp do Akademii! Dany jest sześcian ABCDEFGH. Przekątne AC i BD ściany ABCD sześcianu przecinają się w punkcie P (zobacz rysunek). Tangens kąta, jaki odcinek PH tworzy z płaszczyzną ABCD, jest równy:Chcę dostęp do Akademii! Przekrojem osiowym walca jest kwadrat o przekątnej długości 12. Objętość tego walca jest zatem równa:Chcę dostęp do Akademii! Ze zbioru kolejnych liczb naturalnych {20,21,22,…,39,40} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby podzielnej przez 4 jest równe:Chcę dostęp do Akademii! Rozwiąż nierówność x(7x+2)>7x+ dostęp do Akademii! Wyznacz wszystkie liczby rzeczywiste x, które spełniają warunek: 3×2−8x−3/x−3=x− dostęp do Akademii! Dany jest trójkąt ABC. Punkt S jest środkiem boku AB tego trójkąta (zobacz rysunek). Wykaż, że odległości punktów A i B od prostej CS są dostęp do Akademii! Wykaż, że dla każdej liczby a>0 i dla każdej liczby b>0 prawdziwa jest nierówność 1/a+1/b≥4/a+ dostęp do Akademii! W ciągu geometrycznym przez Sn oznaczamy sumę n początkowych wyrazów tego ciągu, dla liczb naturalnych n≥1. Wiadomo, że dla pewnego ciągu geometrycznego: S1=2 i S2=12. Wyznacz iloraz i piąty wyraz tego dostęp do Akademii! Doświadczenie losowe polega na trzykrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy sumę oczek równą dostęp do Akademii! Podstawą ostrosłupa ABCDS jest prostokąt o polu równym 432, a stosunek długości boków tego prostokąta jest równy 3:4. Przekątne podstawy ABCD przecinają się w punkcie O. Odcinek SO jest wysokością ostrosłupa (zobacz rysunek). Kąt SAO ma miarę 60°. Oblicz objętość tego dostęp do Akademii! Liczby rzeczywiste x i z spełniają warunek 2x+z=1. Wyznacz takie wartości x i z, dla których wyrażenie x2+z2+7xz przyjmuje największą wartość. Podaj tę największą dostęp do Akademii! Dany jest trójkąt rozwartokątny ABC, w którym ∢ACB ma miarę 120°. Ponadto wiadomo, że |BC|=10 i |AB|=10√7 (zobacz rysunek). Oblicz długość trzeciego boku trójkąta dostęp do Akademii! http://akademia-matematyki.edu.pl/ Na jednym z rysunków przedstawiono fragment wykresu funkcji kwadratowej określonej wzorem f(x) = -(x-1)(3-x) . Wskaż ten r Zadanie 1 (0-1) - matura poziom podstawowy czerwiec 2023, zadanie 18. Ciąg geometryczny (a n) jest określony dla każdej liczby naturalnej n≥1. W tym ciągu a 1 =3,75 oraz a 2 =−7,5. Dokończ zdanie. Chemia - Matura Czerwiec 2018, Poziom rozszerzony (Formuła 2015) - Zadanie 8. Kategoria: Szybkość reakcji Typ: Oblicz. Reakcja redukcji tlenku azotu (II) wodorem przebiega zgodnie z równaniem: 2NO (g) + 2H 2 (g) → N 2 (g) + 2H 2 O (g) Szybkość tej reakcji wyraża się następującym równaniem kinetycznym: v = k ⋅ c 2 NO ⋅ c H2. W . 200 338 261 388 359 187 358 262

matura czerwiec 2018 zad 11